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From single-trial EEG to brain area dynamics
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Abstract

We here present a new technique for visualizing the temporal dynamics of brain area activation
and interaction at high-temporal resolution. We 2rst applied independent component analysis to
concatenated single-trial EEG data from a fast go–nogo categorization task of natural images and
showed that individual independent components might index neural synchrony within and be-
tween intracranial brain sources. We used time-frequency decomposition to model their dynamic
interactions. In particular, following stimulus presentations, we showed that several independent
components were activated and synchronized in the theta frequency range (near 4 Hz). c© 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

None of the current functional imaging techniques is well suited to address the dy-
namics of brain source activity and their dynamic relationships during visual perception
and categorization. Only EEG has the su?cient time resolution to capture the macro-
scopic dynamics of brain activation and synchronization. However, using EEG we face
problem of reconstructing the intracranial brain sources from the observed signals: the
projections on the scalp of separately generated EEG processes typically overlap both
in time and space, becoming inextricably mixed in recordings from scalp electrodes.
Recovering the locations and activities of these brain processes is known as the EEG
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inverse problem. To avoid fully solving this problem, one can compute diHerences be-
tween stimulus-locked averages of sets of trials diHering by only one characteristic. The
remaining diHerence wave average may then be more easily interpreted [12]. However,
this technique assumes that the diHerence is composed of activity from a few easily
separable brain electrical sources, which may not be the case.
Here we investigated the potential of a new statistical technique, independent com-

ponent analysis (ICA), to separate EEG sources mixed at scalp electrodes and to help
solve the inverse problem [1,6]. We showed that individual independent components
may index neural synchrony in intracranial brain sources. We illustrate their dynamics
and time-varying coherence following stimulus presentation.

2. Material and methods

We used EEG data recorded during a rapid go=nogo visual categorization task us-
ing natural photographs [2]. Subjects were presented with photographs, half of which
included an animal for 20 ms at random intervals of 1.8–2:2 s. Subjects were asked
to release a held button whenever a presented photograph contained an animal image.
Overall performance was high both in terms of accuracy (94% correct responses) and
speed (median reaction time 440 ms). Moreover, though the task involved complex
visual processing, averaged EEG epochs for target and non-target stimuli diHered sig-
ni2cantly as early as 150 ms after stimulus onset [11]. Thus, despite the complexity
of the task, it appeared to involve automated processing in the visual system. For this
reason we believe the task is well suited for studying the dynamics of brain electric
2elds during visual processing.
To decompose the data into brain source activities, we used an infomax ICA algo-

rithm. ICA algorithms 2nd a coordinate frame onto which the projection of the data
has minimal temporal overlap. The core mathematical concept of ICA is to minimize
mutual information among the data projections. ICA can be viewed as a linear de-
composition alternative to principal component analysis (PCA). In PCA, the data is
represented using perpendicular axes, whereas ICA is not limited by this constraint
[7]. ICA has been applied to various problems including decomposing fMRI data and
performing speech and noise separation [9]. However, performing ICA decompositions
is most appropriate when sources are linearly mixed in the recorded signal, which is
precisely the case for the various brain processes summed by volume conduction in
scalp EEG.
Some earlier studies applied ICA to collections of single-trial EEG data averages,

but this raises several problems. First, ICA may require many observations to separate
two or more processes, so a problem often faced using averaged EEG data is that
there are not enough conditions in the training set to obtain stable ICA components.
Another problem with using averaged EEG data is that the averaging process may
cancel out the activity of many brain sources. Finally, data averages by their nature
contain sums of activity occurring at similar times. When two or more sources reliably
contribute to the response average at the same times, ICA may assign their sum to a
single component.
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Fig. 1. Properties of two independent components (2 and 3). (a) Component scalp map (shading indicates
relative projection strength, arbitrary units). (b) ERP-image plots of activity of stimulus-locked trials’ target
response of component 2 and 3 (shading indicates activity, arbitrary units). The trials are ordered (from top
to bottom) according to the reaction time of the subject (black thick line). Plots (a) and (b) show the spatial
and temporal patterns constitutive of the two components. (c) Equivalent dipole location for components 2
and 3 found by BESA. See Fig. 2 concerning the accuracy of these models. (d) Spectral power and inter-trial
coherence changes following target stimuli. The top panels indicate the power spectral perturbations (in dB,
relative to pre-stimulus baseline); the bottom panels show the inter-trial coherence (from 0 to 1) (see text
for details). (e) Cross-coherence between components 2 and 3. Top panel: cross-coherence magnitude (from
0 to 1) indicating the amount of synchronization of the two components at each frequency and time window.
Bottom panel: cross-coherence phase indicating which of the 2 components is leading (phase in degrees).
These time=frequency measures may be used to visualize the global interaction between selected independent
components in a speci2c frequency band (see Fig. 3).

To tackle these problems, we chose to train ICA on the whole collection of correct
single-trial data from each subject [5]. More speci2cally, we used the infomax ICA al-
gorithm of the ICA=EEG toolbox of Makeig et al. [6]. After applying ICA, we manually
[3,4] or semi-automatically distinguished those components that were related to neural
activity from those related to artifacts. Software we developed for artifact identi2cation
is available at www.sccn.ucsd.edu/eeglab. Each independent component consists of a
time course of its activity (Fig. 1b) and a scalp topography (Fig. 1a) specifying its
projection to the electrodes. From the non-artifact independent components, we choose

http://www.sccn.ucsd.edu/eeglab
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the six for each subject that contributed the most to the early averaged visual response
(from 0 to 400 ms).

3. Results

Most neural activity-related independent component could be well modeled using a
simple intracranial electrical source con2guration (Fig. 1c) by a single brain equivalent
dipole or by two bilateral and symmetrical equivalent dipoles in a spherical head model
using the BESA software [8]. It is important to note that the ICA algorithm only relies
on statistics and knows nothing about the biophysics or geometry of the head. The
positions of the electrodes are irrelevant for the algorithm, and shuLing the time order
of the data also does not alter the resulting decomposition. As a consequence, the fact
that most independent components were accounted by single equivalent dipoles with
low residual variance suggests that these components likely represent the activity of
unitary (or in some cases possibly bilateral) brain sources. Among the six selected
independent components for the subject shown, three (4; 5; 6) had equivalent dipole
locations in or near visual cortex, two (1; 2) had pre-central midline equivalent dipole
locations, and one (3) had an equivalent dipole location near the right hand motor
cortex. When localizations were calculated separately for two task sessions for this
subject, there was a clear correspondence between the equivalent dipole locations for
the two sessions (Fig. 2).
We then applied time-frequency analysis to the activity time course of the six selected

independent components to detect the occurrence of spectral power changes at speci2c
frequencies and times relative to stimulus onset. We used single-cycle wavelets to
obtain a better time resolution than standard Fourier transforms (we veri2ed that the
results using the two methods were similar). Fig. 1 (d and e upper panels) shows the
dynamics of two of the selected components. All changes shown were signi2cant at
the p¡ 0:01 level according to a bootstrap test using surrogate data. We observed that
activity of the six components varied with time and conditions in several frequency
bands. Several of the selected independent components became more active in the low
theta frequency band (near 4 Hz) following both target and non-target stimuli (Fig. 3).
At this frequency, it appeared that visual brain components were 2rst to increase their
activity in this frequency band, then midline components and 2nally the motor area
component. The motor component became more active only in target trials, consistent
with the fact that the subject was instructed to give a motor response only following
target images. We also found a similar pattern of independent component activations
at the same frequency in data from the same subject performing the task on a diHerent
day (data not shown). The method allows close study of component activities in any
frequency range.
To determine the consistency of these changes across trials in the selected indepen-

dent components, we used inter-trial coherence, a measure of the reproducibility of
the phase of stimulus-locked trial activity at each frequency (for details about these
measures see [7]). Fig. 1 (d and e lower panels) illustrates inter-trial coherence results
for two of the selected independent components. Fig. 3 represents the time course of
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Fig. 2. Equivalent dipole location of the six selected independent components contributing to the evoked
response of the same subject in two diHerent sessions. Across sessions correspondences are indicated. On the
right, the table indicates the accuracy of the model for all selected components (residual variance unaccounted
for in the BESA spherical head model). For each component we chose the better 2t of two models: a
single equivalent dipole model and two bilateral equivalent dipoles constrained to left=right symmetry. All
electrodes were considered in the localization of the equivalent dipoles (except at most 2 pairs of bilateral
noisy temporal electrodes in some cases). Among the equivalent dipoles, 3 could be interpreted as being in
or near the visual cortex (4; 5; 6), two along the pre-central midline (1; 2) and one near the right hand motor
cortex (3).

inter-trial coherence (and power and cross-coherence) in low theta frequency range
for the six selected components. With respect to this measure, each component had a
speci2c behavior. For instance, stimulus-locked inter-trial coherence for component 6
at 300 ms was higher following non-target stimuli than following target stimuli.
Though the independent components returned by ICA were maximally independent,

we observed that they were not totally independent. The amplitude of the cross-coherence
value at a given frequency between stimulus-locked trial activity of two components
indexed the amount of synchronization of these components at that frequency. The
phase of the cross-coherence indicated which of the two components’ activities tended
to lead at that frequency. For instance, a high cross-coherence amplitude and zero phase
diHerence for two components at 4 Hz would indicate that they tended to be highly
synchronized in that frequency range. Fig. 3 visualizes signi2cant synchronizations be-
tween all pairs of the six selected independent components for target and non-target
trials near 3:6 Hz using broken lines connecting them. Overall, the synchronization
of the selected components was higher following stimulus presentation (100–500 ms)
than during the pre-stimulus baseline or thereafter (before 0 ms or after 500 ms, data
not shown). We also observed both event-related synchronization and desynchroniza-
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Fig. 3. Frames from an animation showing the activation of the independent components and their coopera-
tivity in the low theta range frequency during visual processing (from 0 to 350 ms) of target and non-target
stimuli in the low theta frequency band (3:6 Hz). For details on the indicated components, see Fig. 2. Relative
spectral power (in dB, relative to pre-stimulus baseline) is visualized by the size of the circles, whereas the
shading of the circles represents the strength of inter-trial coherence (ITC). The thickness and color of the
lines connecting each pair of components illustrate the magnitude of their synchronization (cross-coherence
amplitude from 0 to 1). The gap in the lines connecting two components shows the relative phase of the
two components’ activity (cross-coherence phase in degree). If this gap is centered, it indicates that the two
components’ activity have zero phase diHerence and tend to be synchronous in this frequency range. The
histogram, on the upper part of each head plot, indicates the relative probability of response of the subject. In
this example one can clearly see that peaks in power occurs at diHerent times with respect to stimulus onset
for the diHerent selected components, and the appearance of theta synchronization among the components
(peaking near 250 ms). A movie of this 2gure is available at www.cnl.salk.edu/∼arno/movies.html together
with Matlab programs used to generate the animations.

tion between independent components. As an example, the phase relationship of two
components with occipital equivalent dipole locations (components 4 and 6) changed
across time: from a tendency towards synchronization near 150 ms, the two components
tended to become anti-synchronized by 200 ms (Fig. 3).

http://www.cnl.salk.edu/~arno/movies.html
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4. Discussion

We have shown that the use of an advanced set of signal-processing tools can re-
veal the dynamics of brain activation and synchronization phenomena at high-temporal
resolution which otherwise appeared to be inextricably embedded in the multi-channel
EEG signals and are not revealed by standard averaging methods. In the visual cate-
gorization task, we showed for one subject across two sessions, a reproducible pattern
of activation at several brain locations in a low-frequency range. Changes in EEG
activity appeared in and between cortical visual areas, pre-central midline areas and
a motor-related cortical area. We believe further study of the result of our analyses
can cast new light on the debate about feedforward and feedback hypotheses of visual
processing [10–12].
The mathematical tools we used are still unconventional in neuroscience. However,

infomax ICA is now widely used by the scienti2c community, and the spectral measures
of coherence and cross-coherence we used are standard techniques for determining the
relationship of two or more electrical sources. The method presented here allows us to
tackle the complex dynamics and relationships of brain intracranial equivalent dipole
locations of independent components. While it might be still too early for us to interpret
the observed coherences and synchronizations, our results indicate the potential utility
of these techniques over traditional approaches. In conventional EEG analyses, spectral
analyses are applied at the electrode level, including measures of synchrony between
scalp electrodes using cross-coherence [13]. However, the interpretation of electrode
coherences are ambiguous as they may be produced by various amplitude changes in
several processes at diHerent brain locations. For example, coherence increases between
two electrodes may be accounted for by an increase in the power of a single major EEG
sources projecting to both electrodes, and thus synchronizing the recorded activity. In
our case, computing cross-coherence between components means we may more directly
assess the dynamic relationships between diHerent brain areas.
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